
ITUPass Documentation
Release 0.1

Emin Mastizada

Dec 22, 2017

Contents:

1 User Guide 3

2 Developer Guide 5
2.1 INSTALL . 5
2.2 Database Design . 5
2.3 Model Design . 6

i

ii

ITUPass Documentation, Release 0.1

Team itucsdb1739

Member Emin Mastizada

StudentID 150120914

Keep calm and pass lectures

ITUPass helps to easily track lectures and have connection with classmates. The only idea is to make university life a
bit easier.

Checkout Developer Guide to learn about implementations and User Guide to have an idea how to use system.

Contents: 1

ITUPass Documentation, Release 0.1

2 Contents:

CHAPTER 1

User Guide

At homepage, go to Login at the top of the page, There you will need to login using credentials.

You can use one of our temporarily demo accounts, or Register to create a new account.

After registration or login, it will redirect you to the dashboard. You can access dashboard any time using navigation
header.

To access dashboard from the navigation menu, open your personal navigation menu by clicking to your name in
header panel, select Dashboard.

Dashboard has the list of subscribed events (like academic calendar, Computer Department announcements and etc.)
and your lectures.

Click to add lecture to register for a new lecture. In registration page, easily filter departments and lectures for those
departments.

After registering for lectures and choosing subscribed events, you will notice iCal file URL at the top of the dashboard
page. That is a Calendar file using iCal format for all your schedule.

You can easily use that file to add your schedule to Thunderbird, Google Calendar and any other Calendar application
you want. For online calendars, use “Import from URL” to get live updated for your schedule.

• Expected result:

3

ITUPass Documentation, Release 0.1

4 Chapter 1. User Guide

CHAPTER 2

Developer Guide

2.1 INSTALL

Project uses Flask and PostgreSQL database to work. Add your Flask settings to itupass/.env file to operate, or to your
server environment variables.

Prepare Environment:

* Create virtual environment in venv folder:

$ virtualenv venv -p python3

• Install project: $ pip install –editable .

• Set flask app name: $ export FLASK_APP=itupass $ export FLASK_DEBUG=1

• Initialize database: $ flask initdb

• Run application: $ flask run

Environment Variables:

* `DATABASE_URI` - Database uri address (postgres://user:password@server:port/db)

* `VCAP_SERVICES` - Bluemix settings

* `SECRET_KEY` - Secret key for cookies

* `SENTRY_DSN` - Sentry (debug tool) DSN

* `TravisCI` - Check for Travis Continues Integration environment (pull request test
→˓service)

2.2 Database Design

• Main tables: users, lectures, events, departments

5

ITUPass Documentation, Release 0.1

• lecture_departments used to store department information for lectures, students of which departments can take
those lectures. It connects to the lectures table using lecture key and to the departments table using department
key. It was used to create ManyToMany relationthip between lectures and departments tables.

• lecture_schedule used to store schedule information for lectures. As same lectures can have multiple schedules
(like Math lectures) they are stored seperately and connected to the lectures table using lecture reference key.

• user_lectures is for storing lecture registrations for users (Check User Guide for more information).

• event_categories stores category names in multiple languages for Events.

2.3 Model Design

• Models are located under itupass/models folder, they all has similar structure:

class <Name>(object):
@classmethod
def get(cls, pk):
Get item from database using select command with identifier, can be

→˓multiple identifiers for different entities
Return object with same time, initialized with database result
If row is not found, return None, do not raise exception

@classmethod
def count(cls, **kwargs):
Use "SELECT COUNT" to get number of rows
Use `kwargs` to make filter, same as in `filter` function
Return number of rows as integer

@classmethod
def filter(cls, limit=10, offset=0, order="id DESC", **kwargs):
Use SELECT command to fetch multiple rows from database
Use limit and order for select command
offset is used for pagination
`kwargs` is used for filtering parameters, use `where_builder` from

→˓`Database` class to build `WHERE` clause and its dictionaty values
Return list of objects in same type
If no results, return empty array

def delete(self):
Delete current object from database using identifier (Primary Key)
Do not return anything

def save(self):
If object is new, use INSERT command to add to the database
If existing object (check using identifier), find differences from

→˓the one existing in database using `diffkeys`
Use UPDATE command to update current item in database
Return new object using identifier and `get` function

class Meta:
table_name = "database_table_name_for_object"

• __init__ function of the object should take parameters in the same order as in schema.sql file.

• After creating model add it to itupass/models/__init__.py file for easy import.

Create Form for each Model:

6 Chapter 2. Developer Guide

ITUPass Documentation, Release 0.1

• For safety and validations, use Forms for creating models in views.

• Forms are stored in itupass/forms folder.

Creating View:

• To show your new model in client you will need add view for it.

• Create view file under itupass/views folder.

• Make Blueprint variable for your view, add all views for that Blueprint.

• Add your Blueprint variable to itupass/views/__init__.py file for easy import.

• Register your view in itupass/itupass.py file to make it accessible.

Conclusion:

• After adding Model, Form, View and Template for that view, registering Blueprint for that view in DE-
FAULT_BLUEPRINTS variable, your new item will be added to the app.

• There are 2 main view, client, dashboard and admin, which is for main control. Most of the models will use
only these views to show themself instead of own views.

2.3. Model Design 7

	User Guide
	Developer Guide
	INSTALL
	Database Design
	Model Design

